
 

 

  
Abstract—We investigate the properties of the solutions of PDE 

systems which describe fluid dynamics of the Ocean with heat and 
salinity transfer. We prove the existence and uniqueness theorem for 
a layer. We study the spectrum for the problems modelling the small 
inner oscillations of viscous rotating compressible three-dimensional 
fluid which consider the involvement of the heat and salinity transfer 
for different boundary value  problems which include either 
kinematic viscosity or the combined kinematic and volume (bulk) 
viscosity. We prove that the essential spectrum for both operators 
consists of one real point which depends on the parameters of 
compressibility and viscosity. We also find the sector of the complex 
plane to which all the eigenvalues belong. We compare the obtained 
results with our previous study of the spectral properties for 
incompressible and inviscid rotating fluid. The results of this paper 
may find their application in the study, either theoretical or 
computational, of the Ocean and the Atmosphere of the Earth. 
 

Keywords—Eigenvalues of Differential Operators, Essential 
Spectrum, Fluid Dynamics, Inner Vibrations, Partial Differential 
Equations.  

I. INTRODUCTION 

ET us consider a bounded domain 3RΩ ⊂  with the 
boundary ∂Ω  of the class 1C and the following system of 

fluid dynamics: 
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Here ( )1 2 3, ,u u u u=
  is a velocity field, ( , )p x t  is the scalar 
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field of the dynamic pressure, ( ),T x t  is the dynamic 

temperature of the fluid, ( ),S x t  is the dynamic salinity, 
Constω =  is the Coriolis parameter,  and Tγ  and Sγ  are 

constant positive stratification parameters. 

For the compressibility coefficient α  and the kinematic 
viscosity coefficient ν  we assume 0 , 0α ν> > . 

The equations (1) are deduced, for example, in [1], [2]. The 
study of mathematical properties of different systems of fluid 
dynamics of rotating fluid was started in [3] – [5]. The spectral 
properties of operators generated by rotating and stratified 
compressible inviscid fluid, without accounting of the heat and 
salinity transfer, were studied in [6]- [12]. Particularly, it was 
proved in [6] that the essential spectrum of normal inner 
vibrations is the interval of the imaginary axis [ ],i iω ω− . The 
spectral properties of viscous compressible stratified fluid, 
also without the effects of heat and salinity transfer and 
rotation, were studied first in [13]-[15], where it was 
established that the essential spectrum consists of three real 
isolated points which tend to infinity for vanishing viscosity 
parameter.  However, the spectral properties for the case of the 
equations (1), i.e., for the rotating compressible viscous fluid 
accounting the effects of heat and salinity transfer, has not 
been considered previously. The novelty of this problem, the 
consideration of different cases of the combination of 
kinematic and bulk viscosities, as well as the comparison of 
the obtained results with our previous works, the description of 
the spectral properties and their possible applications to the 
dynamics of the Ocean, either for theoretical fluid dynamics, 
or for computational fluid dynamics, as well as the explicit 
construction of the solution for the layer domain and the proof 
of its uniqueness, was the motivation of this paper. 
We associate system (1) to the boundary conditions 

                                  0u n ∂Ω⋅ =
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where n  is the exterior normal to the surface ∂Ω . Let us 
consider the following problem of normal vibrations                                                                
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We denote ( )4 5 6, , ,v v v v v=


  and write the system (1)  in the 
matrix form 

                                     0Lv =                                         ( 4 )                                                                       
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We define the domain of the differential operator M with the 
boundary condition (2) as follows.  
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We also will consider the system with volume (bulk) viscosity 
coefficient 0β > : 
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 The equations (6) are deduced, for example, in [16]. We 
consider the system (6) with the Dirichlet boundary conditions
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After applying the separation of variables (3) we write the 
system (6) in the form (4) and denote the corresponding matrix 
as 1M : 
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For the operator 1M  we define the same domain as for the 
operator  M . 

From the physical point of view, the separation of variables (3) 
serves as a tool to establish the possibility to represent every 
non-stationary process described by (1) as a linear 
superposition of the normal vibrations. The knowledge of the 
spectrum of normal vibrations may be very useful for studying 
the stability of the flows. Also, the spectrum of operators 

1,M M  is important in the investigation of weakly non-linear 
flows, since the bifurcation points where the small non-linear 
solutions arise, belong to the spectrum of linear normal 
vibrations, i.e., to the spectrum of operator M , which we 
consider in this paper.

 

For small variation of 3 3 , x u  we also consider the  
corresponding system 
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and the initial and boundary conditions correspond each other.  

For the problem (8), (9) we will construct the solution and 
prove the existence and uniqueness theorem.  

II. PROBLEM FORMULATION 
    Let us consider first the problem (8), (9). 

We will construct the solution using the Laplace transform 
with respect to  t , the Fourier transform with respect to 1 2, x x  
and finite sine-  and cosine- integral transforms with respect to 

3x . For the first, the second and the fourth equation of the 
system (8) we apply finite cosine-transform with respect to 3x , 
and for the rest of the equations of the system (8), we apply the 
corresponding sine-transform. For that, we multiply the first, 
the second and the fourth equation by 3cos n xλ ; the rest of the 
equations we multiply by 3sin n xλ , and integrate over the 

interval [ ]3 0,x h∈ , where n
n

h
πλ = .  The general idea of 

construction of such solution in a layer is taken from [17]. 
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In this way, we can reduce the problem (8), (9) to the 
following problem 
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For Laplace transform with respect to t and for Fourier 
transform with respect to ( )1 2,x x x′ = , we will use the 
notations: 
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Thus, from (10) we obtain the system of algebraic equations 
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After solving (11) and applying the inverse Fourier and 
Laplace transforms 1 1

x tF Lξ λ
− −
′ ′→ → , we can represent the solution 

of the problem (10) as 
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In this way, the solution of the problem (8), (9) can be 
represented as follows:  
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The uniqueness of the solution (12) follows from the energy 
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which is obtained by multiplying the system (8) by ( ), ,u T S  
and integrating by parts. 

Summing up the above results, we can state the following 
statement. 

Theorem 1.  

There exist a solution of the problem (8), (9), which is 
represented by (12). The solution is unique in the class of 
functions (13). 

Now, let us investigate the spectral properties of the 
differential operators generated by the system (1). We observe 
that the above defined operator M  is a closed operator, and its 

domain is dense in ( )( )6
2L Ω . 

Let us denote by ( )ess Nσ  the essential spectrum of  a closed 
linear operator N. We recall that the essential spectrum  

( ) ( ){ }:  is not of Fredholm type ,ess N C N Iσ λ λ= ∈ −
 

is composed of the points belonging to the continuous 
spectrum, limit points of the point spectrum and the 
eigenvalues of infinite multiplicity (see [18] ,[19]).  

In this way, every spectral point which does not belong to the 
essential spectrum, is an eigenvalue of finite multiplicity. To 
find the essential spectrum of the operator M , we will use the 
following property (see [20]): 
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the main symbol of L(D) as follows. 
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If there exist the sets s and t which satisfy the above conditions 
and if the following condition holds, 

( ) { }det 0   for all    0nL Rξ ξ≠ ∈ , 

then the operator L(D) is called elliptic in sense of Douglis-
Nirenberg (see [21]). 

Definition 2.   

Let us consider ( ) ( ) ( )1 2 3 1 2, , ,   , ,  Lξ ξ ξ ξ ξ ξ ξ ξ∗= =  - the 
matrix of the algebraic complements of the main symbol 
matrix ( )L ξ ,  ( )G ξ  is the main symbol of the matrix G(D) 
which defines the boundary conditions, 

( ) ( )( ), jM ξ τ τ τ ξ+ = −∏  ,  ( )jτ ξ  are the roots of the 

equation ( )det , 0L ξ τ =
  with positive imaginary part.  

If the rows of the matrix ( ) ( ), ,G Lξ τ ξ τ∗
   are linearly 

independent with respect to the module ( ),M ξ τ+
  for 0ξ ≠ , 

then we will say that the conditions of Lopatinski are satisfied 
(see [20]). 

We will find the essential spectrum of the operators M  and 
localize the sector of the complex plane to which all the 
eigenvalues belong. 

III. PROBLEM SOLUTION 
   Theorem 2.  
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We calculate the determinant of the last matrix: 
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and thus we can see that for only one point  2
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operator  L M Iλ= −  is not elliptic in sense of Douglis-
Nirenberg. Now we will show, additionally, that the conditions 
of Lopatinski are satisfied. 

The boundary condition (2) can be written in a matrix form 

0Gv
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να

≠  

has one root  iτ ξ=    of multiplicity four in the upper half of 
the complex plane.  

In this way, ( ) ( )4
,M iξ τ τ ξ+ = −  . Since the elements of the 

matrices M Iλ−  and G  are homogeneous functions with 
respect to ,ξ τ , then it is sufficient to verify the Lopatinski 

conditions for unitary vectors ξ . Let us choose a local system 
of coordinates so that 1 21 ,  0ξ ξ= = .         

Then, we have ( ) ( )4,M iξ τ τ+ = − ,  and  the corresponding 
matrix will have the following form:       

( ) ( )M Iλ τ− =
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( )
( )

( )

( )
( )

2

2

2

2

2

11 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0

1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

ν τ
α

ν τ

τν τ
α

τ λ
α α

ν τ

ν τ

 − + 


− + 

 − + 

 −

 − + 
 − + 

 

For the matrix ( )M Iλ−  we construct first the adjoint matrix 

( )M Iλ ∗−  (which is composed of algebraic complements of 

the original matrix), then we multiply ( )M Iλ ∗−  by the 
boundary conditions matrix G and thus obtain the following.  

( )
2

3 3
1 32 2,0, ,0,0,0 ,G M I n B B n Bτ τλ λ

α α
∗   

− = + −   
  

 

where ( )21B ν τ= − + . 

Since ( )G M Iλ ∗−  is a vector row, then, evidently, the 
Lopatinski conditions are satisfied and thus the theorem is 
proved.  
 
Theorem 3.  

The essential spectrum of the operator 1M  is composed of one 

real point    ( ) ( )2

1
1ess Mσ

να β
  =  +  

. 

Proof. 

We can choose the same sets s , t as in the proof of theorem 2: 

1 2 3 5 6 4

1 2 3 5 6 4

0,  1,
2,  1.

s s s s s s
t t t t t t

= = = = = = −
= = = = = =

 

In this way, the main symbol of the operator  1L M Iλ= −  will 
be expressed as: 

( )

2 2
1 1 2 1 3 1

2 2
1 2 2 2 3 2

2 2
1 3 2 3 3 3

1 2 3

2

2

1 0 0

1 0 0

1 0 0 .
1 1 1 0 0

0 0 0 0 0

0 0 0 0 0

L

ν ξ νβξ νβξ ξ νβξ ξ ξ
α

νβξ ξ ν ξ νβξ νβξ ξ ξ
α

νβξ ξ νβξ ξ ν ξ νβξ ξξ α

ξ ξ ξ λ
α α α

ν ξ

ν ξ

 − − − − 

 − − − − 

 − − − −= 


− 

 − 

 − 



 

It can be easily seen that the determinant of the last matrix is 
the following: 

( ) ( ) ( )( )
4

8 2
1 2det 1 1M I νλ ξ ξ νλα β

α
− = + − , 

and thus we can conclude that for only one point  

( )2

1
1

λ
να β

=
+

 the operator  1L M Iλ= −  is not elliptic in 

sense of Douglis-Nirenberg. The proof that the conditions of 
Lopatinski are satisfied is analogous to theorem 2. 

 
Theorem 4.  

The spectrum of operators 1,M M  is symmetrical with respect 
to the real axis. All the eigenvalues of operator M are in the 
following sector of the complex plane: 

2

3Re:  Re 0,  Im ,Z C A
A
λλ λ λ

να
 = ∈ ≥ ≤ + 
 

 where 

{ }max , , .T SA ω γ γ=  

For operator 1M  , the eigenvalues belong to the sector 

2

3Re:  Re 0,  Im .Z C A
A
λλ λ λ

να β
 

= ∈ ≥ ≤ + 
 

 

Proof. 

We consider first the case of the operator  M. 

Let us denote  
( )
( )

1 2 3 4 5 6

1 2 3 5 6

, , , , ,

, , , ,

v v v v v v v

v v v v v v

=


=





        and   

1

2

3

4

5

6

0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

T S

T

S

v
v
v

Kv
v
v
v

ω
ω

γ γ

γ
γ

−   
  
  
  − −

=   
  
  
     

  

 . 

Then, the system  ( ){ } 0M I vλ− =   can be written in the form 

4

4

1 0

1 div 0

v Kv v v

v v

λ ν
α

λ
α

− + − ∆ + ∇ =

− + =


 





. 

Now we multiply the last system by { }v  and then integrate by 
parts in Ω . In this way, we obtain the following equations: 

( ) ( )

( )

2 2
4

1,2,3,5,6

2
4 4

1, ,div 0

1 div , 0

k
k

v Kv v v v v

v v v

λ ν
α

λ
α

=

− + + ∇ − =

− + =

∑ 


 



 

We sum up these two equations 
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( ) ( )

( ) ( )

2 2 2
4

1,2,3,5,6

4 4

,

1 div , ,div 0

k
k

v v Kv v v

v v v v

λ ν

α

=

− + + + ∇ +

+ − =  

∑

 

 

 

and then separate the real and the imaginary parts, keeping in 
mind the fact that, since K is skew-symmetric matrix, then the 
expression ( ),Kv v   is imaginary. 

2

1,2,3,5,6
2 2

4

Re 0
k

k

v

v v

ν
λ =

∇
= ≥

+

∑


,                 

( ) ( ) ( )4 4

2 2
4

1, div , ,div
Im .

Kv v v v v v
i

v v
αλ

+ −  
= −

+

 

 



 
 

Let us introduce the value { }max , ,T SA ω γ γ= . 

In this way, we can draw the following two estimates: 
2

2 2 2
4 4 2

2 2 2 2
4 4

div2 div
Im  .

v
A v v v A v A v

A
v v v v

α αλ
+ + +

≤ ≤
+ +




 

 

 

Here we used the inequalities 

( )
2 22

2
2, ,       2L LL

a af g f g b A b A
AA

≤ ≤ + . 

From the relations  
3

2 2 2

1 1,2,3,5,6

div 3 3 ,k k
k k

v v v
= =

≤ ∇ ≤ ∇∑ ∑     

2

1,2,3,5,6
2 2

4

Re ,
k

k

v

v v
λ

ν
=

∇
=

+

∑


       

2
2

2 2
4

1 div
Im

v
AA

v v
αλ ≤ +

+





, 

 

we finally obtain 

2

3ReIm A
A
λλ

να
≤ + . 

For the operator 1M  we have the estimates 

2 2
2 2

1,2,3,5,6
2 22

4

1 1 div
Re ,

k
k

v v
A A

A v v
α β αλ

να β
=

∇ +
=

+

∑ 



              

2

3ReIm .A
A
λλ

να β
≤ +

 
Now, it remains to prove that the spectrum is symmetrical with 
respect to the real axis. For that purpose, we apply the 
complex-conjugation to the original system of 0M Iλ− = : 

 4

4

1 0

1 div 0        ,  

v Kv v v

v v

λ ν
α

λ
α

− + − ∆ + ∇ =

− + =


 





 

from which we can see that, if λ  is an eigenvalue of M , then 
λ  is also an eigenvalue of operator M . For operator 1M  the 
proof is analogous, there will only appear the additional term 
of divvνβ−

 ,  and thus the theorem is proved.  

IV. CONCLUSION 
   For the inviscid case of compressible rotating fluid, it seems 
natural to put 0T Sγ γ= =  and not to take into account the 
functions T, S . In this way, the system (1) turns into  

1
2

1

2
1

2

3

3

2

0

0

0

div 0

u pu
t x
u pu
t x

u p
t x

p u
t

ω

ω

α

∂ ∂ − + = ∂ ∂
∂ ∂ + + = ∂ ∂


∂ ∂ + = ∂ ∂


∂ + = ∂



 . 

For the last system, we proved, for example, in [6]-[8], the 
essential spectrum of inner vibrations is the interval of the 
imaginary axis [ ]( ),i iω ω− . 

Comparing these results with the compressible viscous case, 
we can conclude that the considered problems and the results 
of Theorems 2, 3, and 4 are remarkable and interesting due to 
the special property that, for the viscous fluid, the points of the 

essential spectrum 
( )2 2

1 1 ,  
1να να β +

 , move to infinity for 

0ν → ; while the essential spectrum of the inviscid fluid 
contains an interval of the imaginary axis. That property is 
analogous to the fact that the explicit form for the solutions of 
the inviscid fluid cannot be obtained from the solutions of 
viscous fluid by merely putting the viscosity parameter equal 
to zero. 

Additionally, as we can see, the previous results obtained for 
the inviscid fluid [ ]( ),i iω ω− ,  correspond to the statement of 

Theorem 2 if we put Re 0,   0,   S T Aλ γ γ ω= = = = :   

( )Re 0,  Imλ λ ω= ≤  
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